AD-A129 153 THE INTELLIGENT PROGRAM EDITOR A KNOWLEDGE BASED
SYSTEM FOR SUPPORTING P..{U) ADVANCED INFORMATION AND
DECISION SYSTEMS MOUNTAIN VIEW CA D G SHAPIOR ET AL.

UNCLASSIFIED MAR 83 AFOSR-TR-83-0488 F49620-81-C-0067 F/G 9/2

o |

I
I

T2 flis e

g g B
Emmz.z
w B =
Fu g

==
E

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

DTG FILE COPY

AbA129153

HJHCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dalaianen-rl)l

-

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 12. GOVY ACCESSION NO.

AFOSR-TR. 83- 0488 | #29/53

3. RECIPIENT'S CATALQOG NUMBER

4. TITLE (and Subtitle)

THE INTELLIGENT PROGRAM EDITOR: A KNOWLEDGE
BASED SYSTEY FOR SUPPORTING PROGRAM AND

5. TYPE OF REPORT & PERIOD COVERED

TECHNICAL

6. PERFORMING OG. REPCRT NUMBER

DOCUMENTATION MAINTENANCE ——
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBERY(s)
Daniel G. Shapior and Brian P. McCune F49620-~-81-C-0067 _
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
Advanced Information and Decision Systems AREA & WORK UNIT NUMBERS —
201 San Antonio Circle, Suite 286, PE61102F; 2304/A2 .
Mountain View CA 94040) ‘o
1t. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ————
Mathematical & Information Sciences Directorate MAR 83
Air Force Qffice of Scientific Research 13. NUMBER OF PAGES
Bolling AFB DC 20332 7
14, MONITORING AGENCY NAME & ADDRESS(if dittetent leom Controlling Ollice) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
iSa. DECLASSIFICATION DOANGRADING ' -
SCHEDULE Lia
5. DISTRIBUTION STATEMENT (of this Report) S
Approved for public release; distribution unlimited.
17. OISTRIBUTION STATEMENT (of the abatract entered in Block 20, il dilferent from Report)
18. SUPPLEMENTARY NOTES Piepet
ELECTE
JUN 10 1983
19. KEY WORDS (Continue on reverse aside if neceasary and identify by block aumber)
i
0 ABSTRACT (Continue on reverse side If necessary and identily by block number)
his paper presents work in progress towards a program developnent ano mainten-
ance aid called the Intelligent Program Editor (IPE), which applies artificial -
intelligence techniques to the task of manipulating and analyzing programs. -
The IPE is a knowledge based tool: it gains its power by explicitly represent- ~
ing textual, syntactic, and many of the semantic (meaning related) and pragmatic —
(application oriented) structures in programs. To demonstrate this approach,
the authors implemented a subset of this knowledge base, and a search mechanism
called the Program Reference Language (PRL), which is able to. (CONTINUED)
— ——
£ ORM
DD ,%an 73 1473 =oiTioN OF 1 NOV 68 15 OBSOLETE UNCLASSIF IED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

88 —06 10--03%— -

e bt s

S

T e A e R

: UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) N

ITEM #20, '@Wlocate portions of programs based on a description
provided by a user. This work is an applied research effort., It was moti-
vated by issues discovered during a study of software maintenance problems
in the Air Force, and is intended to be moved into application within seven

yearg,k;:_
P ———————————————" * -
Accession Foy
CNTIS GRAAI ;
O

DTIC TAB
Unannounced 0
Justification o

By

Dis}ripution/4 o
r-—-Avail.alul.i.w Codes
" |Avail and/or
Dist Special

Al 1|

UNCLASSIFIED

i w - ~ Rhde

- \ \._

SECURITY CLASSIPICATION OF Tu'e BAGE ‘When Dete Enterad)

oot
o

-
-

_ AFOSR-TR- 83- 0488

1

THE INTELLIGENT PROGRAM EDITOR

A Knovledge Based System for Supporting Program and Documentation Maintenance

Daniel G. Shapiro
Brian P. McCune

Advanced Information & Decision Systems
201 San Antonio Circle, Suite 286
Mountain View, CA 94040

ABSTRACT

Thie paper presents work in progress towards a
program development and maintenance aid called the
Intelligent Program Editor (IPE), wvhich applies
srtificial intelligence techmiques to the task of
sanipulsting snd analysing programs. The IPE is a
knowledge based tool: it geine its power by expli-
citly representing textual, syntsctic, and many of
the semantic (meaning relsted) snd pragmstic
(application oriented) structures in programs. To
demonstrate this approach, ve implemented s subset
of this knowledge base, and a sesrch wmechaniem
cslled the Program Reference Langusge (PRL), which
is able to locate portions of progrsms based on &
description provided by s user. This work is an
applied research effort, It wss motivated by
issues discovered during a study of eoftwvare
maintenance problems in the Air Force, and is
intended to be wmoved into application within 7
years.

1. 1NTRODUCTION

The effort aud expense involved in software
maintenance bave been recognised as major limits-
tions on the capabilities of current softvare sys-
tems. The difficulties arise for seversl ressons:
firet, although bhardware costs have decreased,
softvare expenses hsve skyrocketed owing to the
higher cost of professional progrsmmers. Second,
as softvare projects have become more and more
ambitious, the technical difficulty of waking
changes to the resulting progrems hss incressed
drematicelly. Ae an illustration of this fact, the
maintensnce costs for lsrge systems typically sur-
pass the funde required for their initial develop-
ment; a8 & csse in point, the Defense Department
nov speads more than 3 billion dollars per year on
software maintenance. These problems are addressed
in pert by the crestion of standardized structured
programming lssgusges such es Ada, but in our opin-
ion they will only be solved by the results of new

This research vas supporied by the Air Porce Office
of Scientific Research under coutract Fé9620-81-C-
0067, the Office of Naval Research uader comtract
N00014-82-C-0119, and Rome Air Development Center
under contract 730602-80-C~0176.

research into sutomated programming support sye-
tems. We expect that many suchk tools will rely on
the spplication of artificisl intelligence tech-~
niques.

To gain better insight into the specific prob-
lems of softvare maintenance, AlI&DS performed &
study vhich analyzed software maintensnce problems
in the Air Forcel. The study concluded that the
process of comprehending the form snd function of
existing softvare (i.e., what it does and how it
does it) is the wost crucial step in the wmainte-
nance process. A number of tools which can affect
that problem within the medium term (3 to 7 yesrs)
were defined.

This “comprehension problem” is revesled in
many ways. To begin with, most programming instal-
lations have & high turnover rate of personnel and
have trouble finding qualified replacements. As s
result, the maintenance personnel sre often unfemi-
liar with the program that is being msintained. At
the same time, documentation is often unavailable,
or of poor quality when it is available. This
increases the difficulty of comprehending & given
program. It is not easy to understand a progrsm by
directly reading the code because of the quantity

-of detail involved and also becsuse coding stan-

dsrdes are poorly enforced snd rarely agreed upon.
Finally, the process of isolating bugs, designing
solutions, and determining the remificstions of
changes is difficult in the presence of an incom-
plete understanding of the program’s organization.
The reletive difficulty of this task is sffected b
the tools available to the programmer.

The software maintenance study identified &
collection of tools designed to alleviate these
problems, all of wvhich rely on a sophisticated
understanding of the structure of programs. In
effect, they operate by transferring some of the
expertise curremtly in the minde of programmers
into a machine usable form that can be shared.
Three of the wost relevant tool ideas are susmar-
ized below.

The Iptellizent Progres Editoxr (IPE) ie o
knovliedge-based tool for supporting the development
end msiatensnce of software. It ambodies s deep
underetanding of the structure of programs and of
the sanipulations vhich progrsmmers typically apply
to code. It can provide access to a variety of

Approveq for

stribugy n"u‘:.’ii“’ toaaseT

83 06 10 0831

- e e

intelligent tools, e.g., the Documentation Assie-
tant described below.

The Documegtation is & system that
helps organize, obtain, maintsin snd sccess many
different forms of documentation, ranging from line
by line comments to design priociples and applica-
tion oriented requirements that underly the struc-
ture of code as s vhole. The Documentation Assis-
tant is intended to provide knowvledge which other
systems (such as the IPE) csa employ.

The Progrempipng Manager assists the programmer
by systematicslly applying sdministrative and
techunical policies. It enforces some procedures
(e.g.; testing of code before installation), sug-
gests others (e.g., notifying a user group of a
change), and sutomsticslly performs some actions om
its owm. The Programming Mansger is also intended
as a form of Documentstion Assistant for expressing
heuristic knovledge sbout code, for example, that
buge in module A often cause run-time errors in
module B.

At the current time, AL&DS is actively working
on all of the tools described above. The remsinder
of this paper focuses on s description of the IPE
and of the knovledge it will comtain. We conclude
with a8 scensrio demonstrating an actusl implementa-
tion of s portion of the IPE"s knowledge base used
in the context of a progras search.

2. TBE INTELLIGENT PROGRAM EDITOR

The Intelligent Program Editor (IPE) is & tool
nov being developed to support softvare development
and maintensnce in a sophisticated way2, The sys-
tem gains its power through the use of an explicit
nodel of the programming process, and & datsbase
called the Extended Program Model (the EPM), which
represents the functionsl structure of code. The
1PE vuses this knowvledge to support the design end
manipulation of programs as semantic objects; this
should be contrasted with the text string viewpoiunt
that most editors provide. For example, the IPE
vill be able to automatically fill in syntactic
forms, prompt the user during the completion of
prograsming cliches, end wmonitor s program for
semantic consistency while it is being wmodified.
We expect the IPE to model the type of the user’s
prograsming activity, and to help choose or invoke
appropriate tools.

The payoff of the IPE may be extremely large
in terws of enhanced programmer productivity and
incressed reliability of code. Productivity will
be improved because the system’s high level vocabu-
lary and msnipulstion methods will sllow mainte-
nance requests to be completed faster. Relisbility
will be enhanced becsuse the IPE will sutomaticsily
cstch certain kinds of semsntic errors that were
formerly psssed into delivered code. In addition,
the IPE will have & large impact on the sres of
program comprehension; eince it wmaintaine
koovledge bsse that documents code from s variety
of perspectives, it provides s forum for trensfer-
ting expertise that was formerly lost as program-
mers moved on to differemt tasks and jobe, If
these effects cumulatively produce as little ss s
one percent effect on the maintemsnce process in

s P Y V-

the U.S., the savings vill be measured in the tens
of millions of dollsrs snnuslly.

Figure 1 containe & block diagram of the 1IPE,
The oystem is composed of threes major parts: the
Extencxd Program Model, vhich provides knowledge of
program (tructures and hov to accese them; a Pro-
gremming Cootext Model, which lets the oystes
understand some of the user’s intent as he accesses
or modifies code; and a collection of semantic
sualysis and wmanipulation tools that provide the
programmer vith s wore powerful vocabulary for
sanipulsting programs, above the level of character
by character, or line by line changes. The IPE
aleo contsine a user interface and a programming
executive which coordinste the facilities of the
system and present them to the user. The user
interface will use multiple vindovs and allovw com-
mands to be typed or selected from wmenus. See
reference 2 for details.

USER INTERFACE

E0ITING
Executive

5

N

PROGRANINI NG
CONTEXY

EXTENDED PROGRAM

Figure 1: The Intelligent Program Editor (IPE)

2.1 THE PROGRAMMING CONTEXT MODEL

The Programming Context Model is s knowvledge
base that identifies the sequence of activities
that are typically involved in the process of
developing and maintsining code. This information
supports the IPE in a variety of ways, but in par-
ticular it sllows the system to guide the program-
mer through the coding sequence and to remind hias
of actions which he bas not performed. For exam-
ple, the Programming Contezt Model lists progrsms
creation, debugging, wmodification and exploration
ss major contexts, and rvefines program crestion
into functional definition, algorithe definitiom,
data structure selection and coding. Since the

coding process is further defined to include docu-

mentation, the IPE c¢sn invoke the Documentation
Assistant tool and prompt the user to provide
specific types of formatted informstion when each
nev module is defined.

The context model slso gives the IPE & wvay to
invoke its own facilities at appropriate times.
Yor example, if the user is in the process of
defining an slgorithm, then the system will
sutomatically sesrch the EPM’s databsse of typicsl
programming patterns to see if a relevant template
can be applied. (It should be mentioned that . the
IPE will oot enforce & particular sequence of cod-
ing activities. Our philosophy is to allow the
programmer to freely jump bstveen programming con-
texts as he desires.)

2.2 MANIPULATION AND ANALYSIS TOOLS

The IPE°s manipulstion and snalysis tools
directly employ the kuowledge sources in the EPM.
These tools are responsible for wmaking additions
and deletions to the EPK’s stoxe of information,
and for using its data to run semantic checks on
the user’s program as it is formed. (The EPM
itself also does lower-level checking automatically
to ensure the iaterssl consistency and well-
formeduess of ite multiple knowledge representa-
tions.) We have defined several tools of this kind
that the IPE should contsin. 1In addition to the
Documentation Assistant discussed previously, the
IPE vill have an advanced program manipulstion
facility, & eemsntic error detection tool, and &
style analysis caspability. These are described in
the following sections.

2.2.1 Advsnced Prograa Manipulation

An intelligent editor that has & substantial
amwount of knowledge about the semsntic structure of
programs and about the semantics of mesningful
operations can supply much better support to the
programmer. For example, it ie poseible to provide
operations that directly transform "while" loops
into "for" loops, or iterations into recursions.
Another type of syntactic operation interactively
constructs & subroutine call by prompting the user
for the nsme and actual parameters of s routine.
This process will ensure that the aumber and type
of the arguments in the calling statement agree
vith the declarations in the procedure’s implemen-
tation.

The IPE will aleo provide templates for wmore
semantic comstructs, osuch as the typicsl program-
ming patterne (descrided 1later) which are the
building blocke thsat programmers use to implemesat
larger slgorithme or routines. With this informe-
tion ia hsad, the system will be able to guide the
user through the implementation of sophisticated
routines by promptiag for each functional part of a
routine by using a wnemonic word or phrase.

2.2.2 Semsutic Avalysis

The semantic analysis tools within the IPE
allov the system to identify sections of code which
violate principles of correct program comstruction.
These principles define “rational form" constraints
vhich restrict the allowable composition of pro-
grams. For exsmple, traditiomsl type checking
operations for etrongly typed languages ensure that
assignment statements are mever used betwveen vari-
ables that are declsred to be of incompatible
types. Similerly, it is mot ressonable to use a
varisble before it is inmitislized. As & third
exsuple, s rationsl fore cometrsint insists that
all sections of a program can in fact be resched
through soms sequence of control steps (and yet,
many large programs oftem contsin desd regions
vhich csunot be executed even in principle).

The semantic analysis tools performa these
kinde of operations by examining the representa-
tions vhich the EPM provides. The dats which sup-
ports these capabilities are described in Section
2.3.

2.2.3 Style Analysis

Some programming styles (patterns of program-
ming language usage) are hard to comprehend and are
subject to insdvertent or difficult-to-detect
errors. Guidelines of good style include advice
about making systems wodular, adding comments to
the code, clearly describing any assumptions made,
and minimizing the use of “side-effects”, etc.

Current sutomated etyle asnalysis tools sre
limited to etrsightforward eyntactic anslysis of
code. Style analyeis in the IPE will be similar in
sature to the semantic analysis discussed above,
except that the rules will be recommendstions
rather thas requirements. By making the style
snalyser a& tool of the IPE, style anslysis can be
done on an incremental basis, e.g., each time s
wodule is completed. The user can use all of the
facilities of the IPE for altering code or documen-
tation to conform to the style spalysis guidelines.
When appropriste, the IPE might be able to perfora
simple transformations to automatically correct
style violatioms. 1a addition, the user would be
provided with the ability to wmodify the style
rules, so that ones which are not essentisl and
which conflict with the user’s preferred style can
be suppressed.

Ia keeping with the philosophy of the 1IPE,
style rules cam be textusl (e.g., “loop bodies
should be indented"), syntactic (e.g., “don’t
aseign to loop variadles inside & loop™), semantic
("don’t use expressions with side effects in
declarations™), or even application oriented in
asture.

2.3 THE EXTENDED FROGRAM MODEL

The Exteunded Program Model (EPM) is s system
for representing asnd accessing progrems in
sophisticated wvay. It sccomplishes these tasks by
defining s vocabulary for discussing programs which
uses terms that are much closer to the omes which
programmers uaturally employ. The EPN provides
this capsbility through the use of s knowledge base
that vzepresents the structure of programe from s
veriety of views: from lov-level textusl, or char-
acter by character informatiom, to explicit seman-
tic structures that document the programmer’s
intent for s piece of code. This informatior
corresponds to vhat wve believe the Documentation
Assistant aud the other msnipulation and snslysis
tools discussed esrlier need to use. Thus, the EPM
can form the backbone for s number of systems wvhich
exhibit a deep understanding of the orgsnizational
structure and mesning of code.

The EPM is constructed in terms of two major
subsystems (see Figure 2): a database of program
structures (the PSDB) and a search and updating
component called the Program Reference Language (or
PRL), vhich provides access to the PSDB. In addi-
tion, the EPM contains s library of “"rational form"
constraints that vill monitor program composition
for its semantic content. As a vhole, the system
can be thought of as a dstabase msnagement system
for wmaintsining <code. It provides a search
language for accessing its knovledge, a facility
for performing updatas, as vell as 3 set of seman~
tic integrity and consistency comstraints for
mouitoring the validity of the data it comtains.

EPM

SEARCH
(PRL) MANLPULATION

PROGRAM STRUCTURES
DATA BASE

SEMANTIC INTEGRITY
& CONSISTENCY CONSTRAINTS

figure 2. The Extended Program Model

2.3.1 The Progrem Structures Database

The EPN°s knovwledge or datadbase of prograa
structures (the PEDB) is constructed ia terme of &
hierarchy of representstions which reflect the

transition from s syotactic to a wore intestion-
oriented analysis of code (Figure 3). For the pur-
poses of the PRL, we are considering these
viewpoints to be abstract dats types which facili-
tate differeat sorts of retrieval operatioms.

TEXTUAL DOCUMENTATION

INTENTIONAL AGGREGATES

INTERTIONAL ANNOTATIONS

TYPICAL PROGRAMMING PATTERNS

SEGMENTED PARSE

SYNTACTIC PARSE

TEXT

Figure 3. A Hierarchy of Program Structures
in the EPM

The textual representation gives the EPR the
view that moet text editore provide. It is & low-
level approach, concerned vwith words snd delimiters
as opposed to the semsatics of programs, but it
allows for important textual eearch operations..
Similerly, the syntsctic viewpoint is provided by
some prototype text and "structure”™ editors. It
embodies the rules of grammar for particular pro-
gramming languages. The syntactic knowledge base
provides the EPM with a vocabulary for programming
constructs such as “for™ loops, procedures, and the
visible sud private designations in Ada programs.

At the mext level, wve have provided a oeeg-
mented parse abstraction which defines s vocsbulary
for a program ia terms of its component dets and
control flow. 8o, for exasple, iterstions are
decomposed into a set of roles which identify the
subfunctions of & 1loop. Iu the breskdows we ave
using, loops contain gengrators, filters, termima-
tors, and augmestations’. Generators are segments
which produce a sequence of velues. They can be
further refined into initializations and a body,

T AT e —— AN

-

e ey

vhich is the portios that is executed msmy times.
Filters restrict that sequence of vslues. A termi-
ovator is like & filter, except that it has the
additionsl potemtial to stop execution of the loop.
An augmentstica consumes vslues and produces
results. There are other vocabulary slements for
describing straight line code.

The tazomomy that has beem discussed uwp watil
this poist primarily ceptures informstion sbout the
form of progrsme ss opposed to their mesming. The
only sempantic elements we bave introduced describe
the substructure of built-in entities such as
loops. 1o the uext, more sbetract viewpoint, we
consider programs to be built of objects with
stereotyped purposes. These asre called typical
programming patteras (TPPs). [Exssples of TPPs
include varisble interchanges, list iasertions, and
hash table sbstractions. These abstractions are
the tools employed by every expert progrsmmer.
Rich has defined a library of such TPPs™.

The remsining knowledge bases, i.e,, inten-
tional anmotations, intentional aggregates and tex-
tusl documentation, sll provide methods for asesoci-
ating the intentions behind a program with specific
features of code. They often capture pragmstic
knovledge relating to the domaiu of application of
the program. For exsmple, an intentional ammota-
tion wmight identify the suthor, creation date, and
wmodification history of a particular file, or
record comments about the goals and assumptions of
a specific routine. Intentiomsl aggregstes sssoci-
ate larger program fragments vith key words sup-
plied by the programmer. They can be used to col-
lect the TPPs and other program features that
implement & single purpose.

The documentation knowledge base sllows the
user to associate textusl comments with any of the
program features already described. 8o, for exam-
ple, he can document the dats flow in a particular
module (saying why an input-output relstionship
occurs), justify his use of particular TPPs, or
explain why particulsr syntactic festures are
employed. Thie knowledge base tskes sdvantage of
the EPN’s partitioning of program knovliedge to
classify comments in ueeful wvays. For example, the
textual documentation knowledge base is aimed at
capturing some of the semantice implicitly associ-
ated with the textusl comments thst are normally
attached directly to code.

R mmwo

In order to demonstrate the feasibility of the
EPM, ve implemented a portion of the knovledge base
descridbed sbove, and built a version of the EPN’e
search facility (the PRL) vhich operstes os that
data,

The PRL is a tool for locating regions of pro~-
gram text based upon a descriptios provided by the
user. As s support system, it provides progrsmmers
vith & mechaniom for isolating portioms of pregrame
in situations vhere they are sot femilier with the

!

detailed structure of the code. This occurs in the
process of editing programs which are too large to
remember explicitly, in the sct of understsnding
code vhich has rarely bees seen before, or im the
process of completing partially implemented
designs. Ia the coutext of program maintenance,
the PR helps to slleviste some of the burden on
the programmer by supplying am intention-oriented
vocabulary for referencing code.

The Program Reference Langusge Isplementation
(PRLI) ellows program search based on four of the
representations described above, nsmely the tex-
tual, syntactic, segmented parse and typical pro-
gramming pattern views (Figure 4). These knovledge
bases are copnected through a ‘“code region"
sbstraction that associstes program features vwith
physical sections of program text.

PROGRAM SYNTAX
TEXT TREE

—
™~

CODE REGIONS

™~
/

SEGMENTED TYPICAL
PARSE PROGRAMMING
(DATA & PATTERNS

CONTROL FLOW)

Figure 4. The Program Reference
Language Implementation

The PELI has & flat information structure. It
represents each Iknovledge base in terms of a com-
plex tree or graph structure of frames. Howvever,
the knowledge bsses have no direct links betwsen
oue another, sltbough the system can arbitrarily
convert between viewpoints by using code regions as
sn intermediary. These conversions are heuristic
processes since the sepsrate representations typi-
cally do mot correspond on s one to one basis.

In the context of our spplied work, we have
slso restricted the types of information the PALI
conteins. The information in its database is
either sutomatically available (bssed on curreat
research prototypes), or can be reasonably obtained
from the wuser. 1In situstions where the latter is
necessary, ve stsume that information may bde
provided in sa incomplete form. It is importamt to
note that every time s piece of documentation is
added to the system’s knowledge base, the perfor-

mance of tbe PR will incresse. This should have
the effect of encouraging the sddition of informa-
tion by the programmer, which has alvays been &
major probles wvith the creation of documeantstioa.

3.1 CODE PAINTING

From a computational point of viewv, the wmain
problem involved vith this multiple representation
spproach is to define s mechanism thst is able to
compare information obtained from the different
sources of knovledge. The PRL1 accomplishes this
vis the code region abstractiom, which functions as
s common langusge that each of the representstions
can use to “communicate™.

Code regions support two different approaches
to search. In the first wmethod, which we call
sequential filtering, the user makes a gross stab
at selecting s code region by genersting all of the
elements which satisfy a fairly easy condition. He
then sequentially restricts that set by applying
more and more conditions. For example, to find
“the loop which computes the sum of the test
scores”, he locates the set of all loops, and then
restricts it to the omes which iovolve teat scores
snd susmations.

In the second approach, the user identifies s
collection of items, poseibly from several dif-
ferent knovledge bases, and intersects them
together to find the elements which satisfy all of
the conditions he vants to impose. In this “code
pasinting™ spproach, the PRLI views each element of
s knovledge base as s specification for a region of
program text (mesuing s portion of the program
text); it combines them by eseentially overlaying
the corresponding regions of code. For example,
the user locates the "loop vhich computes the eum
of the test scores” by figuratively coloring all
loops red and all plsces that compute the sums of
test scores yellow. Asny ctegion which comes up
orange has all of the properties that were desired.
The implementation of code painting is described in
reference 5.

Code painting is & deliberately coarse sffair.
It is designed to exploit the kind of incomplete or
even slightly imsccurate information which the EPM
will contain, given that much of the dats is pro-

for MAXSIZR im 1..10 loop

vided by the user. In many cases, code painting
may not identify the exact section of the program
which the user desired, but ia the cootext of an
interactive systes vith s screes oriented display,
close will be good emough.

3.2 A SCENARIO USINC THE PRLI

The folloving example shovs hov the PELI uses
the code painting paradigm to ansver the question
“find the initializations of the 1loop which com-
putes the sum of the test scores™, given the Ada
program shown in Figure 5. (This is & wodified
version of an actusl tranecript that is presented
in reference 5. A sequentisl filtering ecenario is
also provided there.)

In this example, the user starts by identify-
ing three sets of dsta, corresponding to the summa-
tion TPPs, syntactic loops, and segmented parse
frames involving the test score array.

> (index “summation tpp-database)
«> TPPeet!]

> (index ‘loops syutsxz-database)
*> LOOPset]:{length 2)

> (index “TEST-SCORES segp~database)
=> SEGeetl:{length 6}

The program only contains one TPP, but there
are tvo loops, and several segments vhich relate to
the varisble TEST-S8CORES. 1t is important to
notice that these segments use the data contsined
in the veriable TEST-SCORES but do not necessarily
reference it by that vame. TFor exemple, the
literal “A(I)" in the ARRAYSUM functiom accesses
the test score arrsy. This correspondence is
svailable from the data flow analysis within the
seguented psree.

The user intersects these descriptions by
invoking the code painting paradigm. The code-
painting algorithm returns the largest region of
text which can be described in all three ways.

TOTAL := ARRAYSUM (TEST-SCORES, MAXSIZE);

put (TOTAL);
end loop;

function ARRAYSUM (A: in ARRAY; N: in INTBEGER) return INTEGER is

begin
SUM: REAL := 0;
for I im 1..X loop
SUM:= SUM + A(1);
end loop;
return SUN;
end ARRAYSUM;

rigure 5. The Program Used in the Scenario

edi s

e

> (overlay~code-regions TPPsetl LOOPsetl
SEGeetl)
=> CODE-REGCION]
**for I in 1..K loop
SUM:= SUM + A(1);
end loop;**

In order to compute this information, the
overlay function sutomatically converts the iaput
sets into their corresponding vegions of code. In
the case of the TPP, the progrsmmer had to define
that mapping st some time. The other translations
are available, but heuristic in nature.

At this point, the user has identified s loop
which computes the sum of the test scores. In
order to find the initislizations of this code, he
views this region from the segmented parse perspec-
tive, and scans it for segments of the sappropriste
type. The ters “initislization™ is s segmented
parse keyword.

> (Pilter (Segs-Within CODE-REGION])
“(Seg-Typs “initialisstion"))
=> SEGeet2:(length 2]

The PRLT converts CODE-REGIONl to a set of
segmented parse frames (2 heuristic process), and
the function Segs-Within enumerates the subsegments
it contains. The system identifies two initisliza-
tions as a result, The user prints them by con-
verting them to the textual viev.

> (show! SEGset2)
=> for I in **]..N*® joop
=) #¥SUM: REAL := 0;%¢

The answers correspoud to the initializations
of the iteration variable "I, and the accumulation
varisble, "SUM®, The PRI retrieves the second
initislization, even though it is lexically outside
of the summation loop itself., It is identified
from the segmented parse analysis, which associates
8 loop snd its initializstions no matter how far
apart they might have been in the originsl code.

&, CURRENT STA

AL&DS is now developing a prototype version of
the Iutelligent Program Editor, which is istended
‘to demonatrate the efficacy of our kpowliedge based
approach to the design of progrssming support
tools. The prototype will embody a portiom of sll
of the facilities that have been described: the
EPM, the PR, & collection of wmanipulatiom send
anslysis tools and the Progrsm Context Model. The
1PE is currently tsrgeted for langusges such as Ads
end CM8~2, It will run initially ou a Symbolics
3600, s fast, personal LISP computer that features
s high-resolution bit-wmap displey. .

Io terms of specific modifications, ve expact
to sugnent the EPN’s knovliedge base to include more
pragmatic inforwstion (e.g., the relation betveen
Tequirements and progres structures), sad we istead
to extead the PRL to the poiat where it will be
sble to automsticelly plaan aud carry out search

requests of the kind demonstrated in this paper
(bssed on s single user query). WVhen these exten-
sions are complete, the PRL vill define s wore for-
usl reference language.

The tssk of building s prototype for the IPE
involves s aumber of issues including the incremen-
tsl wodificstion of knovledge bases, and the
recognition of user intentions in code. In order
to solve these problems in the context of our
spplied research, wve expect to rely heavily on
methods for eliciting information from the user,
and to focus ot templste-oriemted techniques for
manipulating prograws,

5. REFERENCES

-~
.

Dean, Jeffrey 8., snd Brian P. MNcCune,
*Advanced Tools for Software Maintensnce”,
AI&DS TR 3006-1, October 1982.

2. Shapiro, Daniel G., Brian P. McCupe, and
Gerald A. Vilson, 'Design of an Intelligent
Program Editor™, AI&DS TR 3023-1, September
1982,

3. Waters, Richard C., "Automstic Anslysis of the
Logical Structure of Programe®, AL-TR-492,
Artificisl Intelligence Laborstory, MIT, 1978,

&. Rich, Charles, “Inspection Methods in Program-

ming¥, AI-TR-604, Artificisl Intelligence

Laborstory, MIT, 1981.

S. Shapiro, Daniel G., snd Brian P, MNcCune,
“Sesrching & EKnowvledge Bsse of Progrems and
Documentation™, A1&DS TM 1014-2, January 1983.

